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The flow over a circular cylinder at ReD = 3900 and 10 000 and M = 0.4 is considered a
platform to study the aero-optical distortions by separated shear layers and turbulent
wakes. The flow solution is obtained by large eddy simulation (LES) and validated
against previous experimental and numerical results. The fluctuating refractive index
obtained from LES is used in a ray-tracing calculation to determine wavefront
distortions after the beam passes through the turbulent region. Free-space propagation
to the far field is computed using Fourier optics. The optical statistics are analysed
for different conditions in terms of optical wavelength, aperture size and the beam
position. It is found that there exists an optimal wavelength which maximizes the
far-field peak intensity. Optical results at both Reynolds numbers are compared.
The optical distortion by the downstream turbulent wake is found to be Reynolds
number insensitive. However, due to their different transition mechanisms, distortions
by the near wake regions are different in the two flows. The aero-optical effects of
different flow scales are examined using filtering and grid refinement. Through a
grid convergence study it is confirmed that an adequately resolved LES can capture
the aero-optics of highly aberrating flows without requiring additional subgrid scale
model for the optics.

1. Introduction
Optical aberrations induced by fluctuations of refractive index in turbulent flows

are a serious concern in airborne communication and imaging systems. For air and
many other fluids, the refractive index is linearly related to the density of the fluid
through the Gladstone–Dale relation, and therefore density fluctuations are the root
cause of optical aberrations. An airborne optical beam generally encounters two
distinct turbulent flow regimes: the turbulence in the vicinity of the aperture and
atmospheric turbulence. Aero-optics is the study of optical distortions due to near
aperture turbulent flows, typically involving turbulent boundary layers, free shear
layers and wakes (see Gilbert 1982).

When an initially planar optical wavefront passes through a compressible flow,
different parts of the wavefront experience different density in the medium and hence
have different propagation speeds. Therefore, the beam experiences a wavefront

† Email address for correspondence: alimani@stanford.edu



274 A. Mani, P. Moin and M. Wang

deformation which can be expressed as (see Sutton 1985; Tromeur et al. 2003)

L(x, y) =

∫ z1

z0

n(x, y, z) dz, (1.1)

where n is the refractive index; z is the direction of optical propagation; z0 and z1

represent the boundaries of the turbulence region; and L is referred to as the optical
path length (OPL) which is proportional to the time of travel between z0 and z1 for
individual rays. Wavefront distortion can be described in terms of variations of L
about its mean:

OPD(x, y) = L(x, y) − L, (1.2)

where OPD is the optical path difference, and the bar symbol represents planar
averaging. For a single-frequency optical beam with wavelength λ , the optical phase
distortion associated with L will be 2πOPD/λ. An initial phase distortion can lead
to large errors in the far field. The consequences of such deformations include optical
beam deflection, beam spread and loss of intensity.

Since optical distortions are present at high spatial and temporal frequencies,
probing their corresponding mechanisms is a challenging task. Several experimental
investigations have been performed to improve understanding of the phenomena
and provide guidelines to control optical distortions. These efforts are mostly aimed
at developing high-speed wavefront sensors (e.g. Malley, Sutton & Kincheloe 1992;
Hugo et al. 1997), studying shear layer interfaces and refractive index structures (e.g.
Dimotakis, Catrakis & Fourguette 2001; Catrakis et al. 2002; Catrakis & Aguirre
2004), examining optical importance of different length scales (e.g. Zubair & Catrakis
2007), providing empirical models and scaling laws for prediction of optical distortions
(e.g. Dimotakis et al. 2001; Gordeyev et al. 2003) and investigating control techniques
to modify aero-optical effects (e.g. Freeman & Catrakis 2008).

Since the late 1980s, numerical studies of aero-optical phenomenon have been
employed to complement experiments. Earlier computational approaches typically
involved two-dimensional Navier–Stokes solutions. Cassady, Birch & Terry (1989)
obtained unsteady two-dimensional solutions for compressible flow over a cavity
and analysed its induced optical distortion. Tsai & Christiansen (1990) solved
two-dimensional Euler equations for a free shear layer and studied the effects of
flow forcing on optical distortions. More elaborate approaches involved Reynolds-
averaged Navier–Stokes (RANS) calculations using a turbulence model such as the
k-ε model. Algebraic relationships were then used to obtain the root mean square
(r.m.s.) of intensity and length scales of the index of refraction field. Smith & Truman
(1990) solved a model transport equation for the r.m.s. refractive index fluctuations.
The turbulence information was then fed into an optics model based on geometric
optics, which predicts properties of the beam such as amplitude loss and spreading.
Truman & Lee (1990) and Truman (1992) were among the first to perform time-
accurate computational studies of aero-optical distortions. They used direct numerical
simulation (DNS) of a homogeneous shear flow and turbulent channel flow to study
the induced optical wavefront errors. The simulations were based on incompressible
flow equations at relatively low Reynolds numbers, and the fluctuating refractive
index was modelled by a passive scalar.

Because of its ability to resolve fluid motions over a wide range of scales at
a reasonable computational cost, large eddy simulation (LES) has emerged as
a modern tool for aero-optical predictions. Childs (1993) carried out LES of a
compressible turbulent mixing layer and performed ray tracing through it. Jones
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& Bender (2001) used LES to study aero-optical distortions in a fuselage/turret
configuration. Tromeur et al. (2003) and Tromeur, Garnier & Sagaut (2006) used LES
to study aero-optics of transonic and supersonic boundary layers. They compared
their directly computed phase distortion variance with that obtained from Sutton’s
(1969) model and concluded that Sutton’s model cannot accurately capture phase
distortion variance of the boundary layer. Sinha et al. (2004) used experiments and
LES to investigate control of flow fields to mitigate the distortion of a laser beam
passing through a cavity shear layer. Visbal & Rizzetta (2008) used LES to study
aero-optics of a free shear layer and examined effects of flow excitation on delaying
the roll-up of the shear layer and reducing its consequent optical distortion.

The optical phase distortion magnitude (|2πOPD/λ|) in these studies varies from
case to case. This quantity can be as low as O(0.1) for a boundary layer flow (see, for
example, Tromeur et al. 2003) or as high as O(10) for a compressible wake flow (e.g.
Jones & Bender 2001).

Depending on their phase distortion magnitude, different methods can be used to
describe the far-field optical quality of distorted beams. Mahajan (1983) carried out
an analysis for the case of small phase distortions and suggested that the ratio of the
maximum far-field optical intensity to that of an undistorted beam, called the Strehl
ratio (SR), is a direct function of the r.m.s. of the phase distortion variance:

SR = max(I )/max(Iundistorted ) = exp(−(2πOPDr .m.s ./λ)
2). (1.3)

Once the optical phase distortion is computed (using (1.1)), this estimate can be used
to describe the far-field beam quality without directly computing the far-field optical
intensity. However, this method is limited to small phase distortions.

Mani, Wang & Moin (2006) recently performed an analysis of highly distorted
beams and introduced a new set of metrics describing the far-field distortions based
on the moments of the optical intensity pattern. Their measures have provable
scaling properties with key parameters such as optical wavelength and distance
of propagation. In addition, effects of diffraction and flow-induced distortions are
decoupled in their metrics. These properties make their measures a suitable tool for
studying aero-optics of highly distorted beams.

The first objective of this work is to study aero-optical distortions due to separated
shear layers and highly aberrating wake flows by computing the relevant far-field
optical statistics and their relations with the underlying aberrating flow. Some of
these statistics are based on the measures described by Mani et al. (2006). In addition,
statistics based on time-averaged irradiance are computed, and their dependence on
parameters such as optical wavelength and the aperture size are explored.

The second objective of this study is to assess the capability of LES to capture
the aero-optical effects of the wake flow with high fidelity, particularly the effects
of different flow scales. Most of the previous LES-based aero-optical computations
used dissipative numerical schemes, which artificially damp small resolved scales of
the flow (see Mittal & Moin 1997 for details). The work by Tromeur et al. (2003) is
an exception in which accuracy of the aero-optical computation for a boundary layer
flow is verified through a grid convergence study. Since wake flows involve higher
magnitudes of optical phase distortions, capturing all of the relevant flow scales is
even more challenging.

The paper is organized as follows. In the next section, the LES methodology
employed for flow simulation is described, and flow statistics obtained from the
computations are compared to results of the previous studies to validate the
simulations. In § 3 optical configurations are described, and the methods for optical
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computations are presented. Instantaneous optical results are shown in § 4. Section 5
presents the optical statistics and discusses the effects of optical parameters and flow
features on these statistics. Section 6 compares the flow fields at ReD = 10 000 with
that at ReD = 3900 and contrasts their induced optical distortions. In § 7 the effect of
small-scale flow structures on optical statistics is examined, and the results of a grid
convergence study are discussed. Conclusions are presented in § 8.

2. Flow simulation
We computed three-dimensional compressible flow over a circular cylinder at

Reynolds numbers 3900 and 10 000 based on cylinder diameter. Computations are
performed using a sixth-order LES code, developed by Nagarajan, Lele & Ferziger
(2003), which is based on conservative compact finite difference on staggered mesh.
The time advancement scheme is second-order implicit near the wall and third-
order Runge–Kutta away from the wall. The dynamic subgrid scale (SGS) model for
compressible flow by Moin et al. (1991) with modification of Lilly (1992) is used to
account for the effect of the unresolved structures on the flow. The discretization of
the code is based on a generalized curvilinear coordinate formulation. More details
on the numerical scheme are presented in Nagarajan et al. (2003).

The computational domain has a radius of approximately 35D (D = cylinder
diameter) and a width of πD in the spanwise direction. The mesh size is 288×396×48
in the wall normal, azimuthal and spanwise directions, respectively, totalling about
5.5 million grid points. The wall normal grid spacing at the leading edge is 0.00062D

with maximum grid stretching of 4 %. A ‘sponge’ layer with thickness of 15D is
applied at the outer boundary to damp out the flow features exiting the domain
and making the boundary non-reflecting. The same mesh is used for simulations at
both Reynolds numbers in order to avoid mesh-biased conclusions when studying the
effect of Reynolds number. The grid independence of the results is discussed in § 7.

The total integration time was over 60 cycles of vortex shedding for the Re = 3900
case and over 30 sheddings for the Re = 10 000 case. In the Re =3900 case, 1400
snapshots of the density field were uniformly sampled from the last 46 shedding
cycles (one snapshot per 50 time steps) for subsequent aero-optical study. Similarly,
the last 15 shedding cycles of the high-Reynolds-number flow were used for aero-
optical investigations.

The literature includes several numerical and experimental investigations of flow
over cylinder which can be used to validate our flow computations. For each Reynolds
number we performed two separate flow simulations, one at Mach number 0.2
and the other at Mach number 0.4. Since all of the previous studies of this flow
are based on incompressible flow regime, the Mach 0.2 simulation was used to
validate the computations, and the Mach 0.4 simulation was used for the aero-optical
computations.

Table 1 compares the major flow statistics from our simulations with the previously
published results. For the case of Mach 0.2 the global statistics are consistent with
other studies. At Mach 0.4 there is a notable difference in the drag coefficient, which
is attributed to the effect of compressibility. Figure 1 presents the wake profiles of
the mean velocity and the Reynolds normal stress components in the streamwise and
cross-flow directions in comparison to previous studies. The present results agree well
with the LES results of Kravchenko & Moin (1998) and reasonably well with the
experimental data of Ong & Wallace (1999) except at the first station. The velocity
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Cd −Cpb
St θsep Umin

Experimentsa 0.99 ± 0.05 0.88 ± 0.05 0.215 ± 0.005 86 ± 2 −0.24 ± 0.1
LESb 1.00 0.95 0.203 85.8 −0.32
LESc 1.00 0.93 0.207 86.9 −0.35
LESd 1.04 0.94 0.210 88.0 −0.37
LESe 0.97 0.85 0.213 88.2 −0.31
Present, M = 0.2 0.99 0.86 0.206 86.3 −0.33
Present, M = 0.4 1.17 ± 0.01 1.05 ± 0.01 0.200 ± 0.002 87.1 −0.27 ± 0.01

a Referenced by Kravchenko & Moin (2000)
b Beaudan & Moin (1994)
c Mittal & Moin (1997)
d Kravchenko & Moin (2000, 1998)
e Rizzetta, Visbal & Blaisdell (2003)

Table 1. Comparison of global flow statistics for flow over a circular cylinder at Re = 3900.
The parameters from left to right are drag coefficient, base pressure coefficient, Strohal number
of vortex shedding, separation angle and minimum averaged streamwise velocity.
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Figure 1. Mean and variance of the velocity field at three stations in the wake of the cylinder
at Re = 3900: u is the velocity in the streamwise direction (x ′) and v is the velocity in the
cross-flow direction (y ′); , present LES (M = 0.2); , LES of Kravchenko & Moin
(1998); ◦, experiment (Ong & Wallace 1999).

at this station is sensitive to the location of the shear layer breakdown, which is, in
turn, sensitive to free-stream conditions as well as numerical errors. Figures 2 and 3
compare the wake profiles obtained from present simulations with the experimental
measurements by Dong et al. (2006).

Figure 4 shows the energy spectra of the vertical velocity in the wake centreline
five diameters behind the cylinder. The present simulation successfully captures
the details of the experimental spectrum, including high-frequency components
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Figure 2. Contours of mean streamwise velocity at Re =3900. (a) Experiment of Dong
et al. (2006) (Re =4000); (b) present LES at M = 0.2. In both plots umin/U∞ = − 0.252 and
�u/U∞ = 0.063.
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Figure 3. Contours of mean streamwise velocity at Re = 10 000. (a) Experiment of Dong
et al. (2006); (b) present LES at M = 0.2. In both plots umin/U∞ = − 0.228 and

�u/U∞ = 0.038.

and the two spectral peaks (at the vortex shedding frequency and its third
harmonic).

Table 1 and figures 1–4 confirm that the numerical method employed can capture
the global statistics, mean and fluctuating velocity statistics and a wide range of
temporal and spatial flow scales. As further evidence of the accuracy of the computed
density field, we have validated the simulated sound field against integral solution to
the Ffowcs Williams–Hawkings equation. We will present the aeroacoustics results
from this flow in another publication.
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Figure 4. Energy spectra of vertical velocity at x ′ = 5D and y ′ = 0 in the wake of the cylinder
at Re = 3900: , present LES (M =0.2); , LES of Kravchenko & Moin (1998); ◦,
experiment (Ong & Wallace 1999).

3. Optical computation
3.1. Optical configurations

In this paper x ′, y ′, z′ coordinates are used to describe the flow variables, and x, y, z

coordinates are designated to describe the optical beam such that z is in the direction
of optical propagation and y is aligned with the spanwise flow direction. For optical
analysis, six different cases are considered as shown schematically in figures 5 and 6.
In the first three cases the optical beams are emitted from the surface of the cylinder.
These cases are relevant to practical applications where an optical beam is shot from
an optical turret on an airborne vehicle. As shown in figure 5, the first three beams
make angles of 17◦, 34◦ and 51◦ with the downstream flow direction respectively.
In cases 2 and 3 the beams pass through the separated shear layer in its transition
regime, while in case 1 the beam passes through the turbulent shear layer and a
considerable portion of the wake. We did not consider any beam passing through the
leading portion of the cylinder, since the corresponding flow region is not optically
distorting. Guided by realistic applications, the diameter of the beam is chosen to be
0.3D. Due to numerical considerations the optical amplitude profile is a Gaussian
that extends beyond nominal aperture diameter in each case.

As the flow convects downstream of the cylinder, the turbulent wake grows in size,
while the turbulence intensity decays. Case 4 and case 5 are considered to examine
the optical effect of turbulence evolution. In these two cases optical beams with the
same optical parameters as in the first three cases are shot vertically through the
wake of the cylinder. In case 4 the axis of the beam is located at x ′ = 1.5D, and in
case 3 it is at x ′ = 3.5D. Finally, in order to examine the effect of aperture size on
optical statistics, we considered case 6 in which the diameter of the optical aperture
is doubled to 0.6D, and other parameters are kept the same as in case 5.

3.2. Numerical considerations

For optical computations, the propagation domain was decomposed into two regions
for each beam: the turbulence region near the aperture and the homogeneous region
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Figure 5. Schematics of beam geometry for six different cases. Dashed lines with arrows
represent direction of optical propagation. The distance between each arrow pairs shows
the diameter of the Gaussian amplitude profile at the optical aperture. The contours show
instantaneous density magnitude between 0.8ρ∞ and ρ∞.

beyond. Each wavefront leaves the optical aperture at z = z0 and then passes the
turbulence region between z0 and z1 followed by propagation to zfar . In the first region
the beam passes through the simulated turbulence, and it experiences a wavefront
distortion as described by (1.1). The change in the wave amplitude in this region can
be ignored, and the electromagnetic field after passing through this region can be
computed based on the phase distortion given by (1.1) (see Sutton 1985; Tromeur
et al. 2003)

U (x, y, z1) = U (x, y, z0) exp

[
−2πjL(x, y)

λ

]
, (3.1)

where U is the electromagnetic field; λ is the optical wavelength; and j =
√

−1. In
the present study, considering the order of magnitude of density fluctuations in the
domain, the length of the first region (z1 − z0) is chosen to be 10D.

A solution based on (1.1) and (3.1) assumes that the beam photons travel along
straight lines between z0 and z1, and deflection of the beam due to refraction is ignored.
In this study, we allowed for beam deflections in the ray-tracing computations, and
it was confirmed that the changes due to this modification were in fact small. The
maximum beam deflection was about 0.3 % of the cylinder diameter and the maximum
far-field intensity change was about 3 % due to this modification.

The amplitude profile of the beam at the aperture is assumed to be

A(x, y) = U (x, y, z0) = Amax exp

(
− x2 + y2

a2

)
, (3.2)

where a is the beam radius, equal to 0.15D for cases 1–5 and 0.3D for case 6, and
Amax is the peak amplitude. To maintain the same optical power for all beams, the
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Figure 6. Isosurfaces of density ρ = 0.98ρ∞ at a time instant. The red zone schematically
represents the optical beam in case 6.

amplitude of the case 6 beam is half of that in cases 1–5. In the computations,
the Gaussian profiles were truncated at 2.25a away from the optical axis where the
optical intensity (amplitude squared) is less than 0.01 % of the centre value.

The integral in (1.1) is computed in x, y, z coordinates, using the fourth-order
Simpson rule. Third-order splines are used to interpolate the density values. Since
the ray-tracing coordinates are not aligned to the curvilinear flow coordinates, we
used a non-standard interpolation approach to maintain the high-order accuracy of
interpolation. According to this method, we required invertible mapping to generate
the flow mesh. In addition to the flow mesh, we generated a Cartesian grid in the
x, y, z coordinates. We then used the inverse mapping to pre-compute and save the
exact curvilinear coordinate of each Cartesian grid point. To look up the density
values in the subsequent ray-tracing routines, we first used Cartesian coordinates of
each ray as inputs and employed three-dimensional splines (see Press et al. 2007) in
conjunction with the pre-computed coordinates to obtain the curvilinear coordinates
of each ray. Once locating the rays in the density field mesh, we used an additional
spline to interpolate the density values.

We note that the OPL distortion due to curvature of the cylinder surface is
subtracted from our OPL computations. In other words, we assume that a steady
correction is employed to the propagated wavefronts so that they propagate without
distortion under no-flow condition (ρ = ρ∞).

The initial phase distortion by the turbulent region causes subsequent changes of
optical intensity in the far field. We used Fourier optics methods to compute the
far-field intensity pattern for each case. The Fraunhofer approximation (see Saleh &
Teich 1991) is used if the distance of propagation is sufficiently large; otherwise our
Fourier optics is based on the exact solution of the wave equation.

We report the estimated statistical error for some of the presented time-averaged
quantities. These errors are due to finite sample size and are obtained by comparing
the statistics obtained using different time windows. Typically we use windows of
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Parameter Default value Other values studied

λ/D 2.5 × 10−6 10−5 and 4 × 10−5

(zfar − z1)/D 105 2000, 4000, 8000 and 32 000
Aperture diameter (2a/D) 0.3 0.6

Optical configuration Case 1 Cases 2–6
Re 3900 10 000
M 0.4

Table 2. The dimensionless parameters in optical computations.

about six shedding cycles and compute statistics using up to seven non-overlapping
windows. Assuming uncorrelated estimates from different windows, standard error of
the mean formula is used to estimate the sampling error of time-averaged quantities.

3.3. Dimensional and dimensionless parameters

While we present all of the optical results in this paper in terms of dimensionless
values, it is helpful to provide an intuitive sense about these numbers by referring to
some physical dimensions. In realistic applications turbulence is generated by a bluff
body of dimension of about 0.5 m (see Jones & Bender 2001 for example); the size of
the aperture is a fraction of the size of the body (20 %–50 %); the wavelength of the
optical device is between 1–10 microns (mostly ∼1 μm); and the far field of interest
is 1–100 km away from the optical device. Consistently, we chose the dimensionless
parameters of our computations (see table 2) such that the relative length scales
matched those in realistic applications. However, to make the computations feasible
we lowered the Reynolds number (physically, higher viscosity for realistic length scale
and free-stream velocity and Mach number). Consequences of using lower Reynolds
numbers are discussed in § 6.

Table 2 shows the list of dimensionless optical parameters used in the computations.
The table lists a default value for each parameter. We also studied effects of variations
to each parameter, and these variations are also listed in the table. We use the cylinder
diameter, D, to non-dimensionalize all of the length scales. Also all of the far-field
intensity values are non-dimensionalized by peak intensity of the default beam (A2

max )
before its propagation.

We also used the non-dimensional form of the Gladstone–Dale law to relate
index of refraction fluctuations to the computed density field. According to Wolfe
& Zizzis (1978) the Gladstone–Dale constant of air for the wavelengths between
1 μm and 10 μm is nearly constant, equal to 0.114f t3/slug = 2.21 × 10−4 m3 kg−1.
Using air density at standard temperature and pressure (1.28 kg m−3) the following
non-dimensional relation can be obtained between refractive index and density:

n − 1 = 2.8 × 10−4 × ρ/ρ∞. (3.3)

Lastly, we note that in this paper the term far field does not necessarily mean the far
field where Fraunhofer approximation is valid. However, for the default parameters
the selected distance of propagation, zfar − z1, is in the Fraunhofer far-field region
with the Fresnel number of F = a2/(zfar − z1)λ= 0.09 � 1 (see Saleh & Teich 1991).
Therefore, most of the presented results can be easily rescaled for other propagation
distances as long as the target distance is within Fraunhofer limit.
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Figure 7. Instantaneous optical intensity patterns at different propagation distances for
distorted beam (top) and undistorted beam (bottom).

4. Instantaneous results
In this section some of the optical results based on instantaneous far-field optical

intensity are presented. The effect of parameters such as distance of propagation,
optical wavelength and optical aperture size are shown in the example figures.

Figure 7 shows the spatial evolution of the far-field intensity of a distorted beam
and contrasts it with that of an undistorted beam. Since the dimensional D is of
order 1 m in relevant applications, the presented distances would be of order 1–10 km
in dimensional units. While the undistorted beam remains focused for a distance of
up to approximately 32 000D, the distorted beam starts to spread out at a distance
of 4000D. In addition, due to high-magnitude phase aberration, the distorted beam
shows a highly irregular and speckled intensity pattern, as described by Zeldovich,
Mamaev & Shkunov (1995).

Figure 8 shows the far-field intensity patterns for two different optical wavelengths.
While the optical wavelength affects the global spread of the undistorted beam, it
only affects the speckle size of the distorted beam without much changing its spread
and intensity. The speckle size was found to be approximately proportional to the
wavelength. Figure 9 shows a schematic explanation of this relation. When two trains
of optical waves merge, an interference pattern is created. When two waves hit a
z-plane with the same phase, local intensity maxima occur. Low-intensity regions
correspond to out of phase interference, and the speckle size s is the distance between
the adjacent peaks. Since optical wavelength determines the distance between the
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Figure 9. Schematics of interference. The arrows represent propagation direction, and parallel
lines represent planes with the same phase which are separated by a wavelength λ. The relative
scales are not realistic. At one z-location the optical intensity is plotted.

same-phase regions, it should proportionally affect the speckled pattern. Using a
trigonometric relation, s can be shown to be equal to λ/θ for small θ .

Figure 10 shows the effect of optical aperture size on the instantaneous intensity
pattern by comparing distortions in cases 5 and 6 (figure 5). By changing the aperture,
while the spread of the beam is not changed significantly, the speckle size is changed
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Figure 10. Instantaneous intensity patterns for two different aperture sizes. The plots represent
the beams of cases 5 and 6. The undistorted far-filed beam intensities peak at values of 0.074
and 0.204 for case 5 and case 6, respectively.

inversely proportional to the aperture size. Again this can be explained using the
interference schematic of figure 9. By tracing the rays backward in the figure, one can
observe that the larger aperture allows for larger θ . In fact, θ is equal to the ratio of
the aperture size to the distance of propagation. As a result, the speckle size scales as

s ∼ λ

a
(zfar − z1).

A rough examination of our results show that this relation is valid for all of our
far-field instantaneous optical computations.

The fact that the far-field optics is dominated by interference makes it difficult to
find correlations between instantaneous optical intensities and local flow structures.
For example, a monotonic local change in the density field may perturb the local
wavefront by a distance of order wavelength, which is sufficient to cause oscillatoric
changes in the far-field optical intensity (see figure 9). In other words, the change
in the resulting local intensity can generate a frequency different from the flow
frequency. Therefore, it is hard to detect the underlying correlation between flow
and optics by simply computing cross-correlations of time series of pointwise density
and pointwise far-field intensity. To avoid this problem and thereby provide a more
general description of optical distortions, we study the far-field intensity through
the means of spatial and temporal optical statistics. These statistics are insensitive
to interference and therefore enable a cleaner examination of the link between flow
structures and optical distortions.

5. Optical statistics
5.1. Statistics based on beam moments

As mentioned in the introduction, the wake regime is highly optically distortive. After
a wavefront passes through the turbulent wake, the phase distortion is typically of
order one or higher. Under such condition, the common measures of the far-field
distortion of the beam, such as the SR formula introduced by Mahajan (1983) (see
(1.3)), are not accurate. One approach to quantify the far-field distortion is to directly
compute the far-field optical intensity patterns and their time-averaged statistics
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Figure 11. Instantaneous tilt for the beam of case 1. Beam tilt grows linearly with distance of
propagation and is independent of the optical wavelength: , instantaneous value; ,
time-averaged value.

(see § 5.2). Another approach would be to quantify distortions in terms of measures
introduced by Mani et al. (2006). Their measures directly link the far-field beam
moments to the statistics of the near-field OPL defined in (1.1). We present here some
of these measures with their properties, and for more details we refer the reader to
Mani et al. (2006).

The distortion of an instantaneous optical beam can be quantified in terms of
spatial moments of the far-field intensity pattern. The beam tilt in the x-direction at
distance of z from aperture is defined as

x(z) ≡

∫ ∫
x I (x, y, z) dx dy

I , (5.1)

where I is the instantaneous optical intensity (see for example figure 7) and I is the
optical power equal to

∫∫
Idx dy. Mani et al. (2006) showed that the beam tilt does

not depend on the optical wavelength (assuming refractive index does not change
with λ) and scales linearly with distance:

x(zfar ) = Lx(zfar − z1), (5.2)

where the bar symbol represents intensity weighted average in the x–y-plane. Here
Lx is the x-gradient of the near-field distorted OPL, which is defined in (1.1). Note
that we assumed that the x, y, z coordinates are defined such that the beam tilt
before propagation is zero. The tilt in the y-direction is defined in a similar way.

Figure 11 shows the history of the x-tilt and y-tilt for the case 1 beam over 10
shedding cycles. According to the figure, the tilt distortion of the beam can reach up
to 2 × 10−4 radians, which is equivalent to 2m mismatch for a 10km far field. For
this beam, the tilt distortion does not vary similarly over different shedding cycles
(not periodic). This is because this beam passes through a near-wake region which
precedes periodic vortex shedding.

Since the flow is statistically homogeneous in the y-direction, the correlation
between the y-tilt and x-tilt is expected to be zero. Using 46 shedding cycles of
the tilt history we calculated this correlation to be 0.02 ± 0.09 which is statistically
zero. In addition, the time-averaged y-tilt is statistically zero. The time-averaged x-tilt
was computed to be (7.0 ± 0.4) × 10−5 radians. We note that according to (5.2) the
time-averaged tilt is proportional to the time-averaged OPL gradient which according
to (1.1) would be a linear function of the density field. Since all of these relations are
linear, the time-averaged tilt can be computed from the time-averaged density field.
This result is only valid for tilt distortion and cannot be extended to other optical
statistics.
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The second spatial moments of the far-field intensity represent the spreading effects
of optical beams. The beam x-spread is defined as

σx(z) = ((x − x)2)
1/2

, (5.3)

where again the bar symbol represents intensity weighted average in the x–y-plane.
Mani et al. (2006) obtained an exact relation for the growth of the beam spread as
it propagates to the far field. Here we only present the asymptotic relation for large
propagation distances (Fraunhofer limit):

σ 2
x (zfar ) =

(
Lx

2 − Lx

2
+

λ2

4π2

(
Ax

A

)2
)

(zfar − z1)
2, (5.4)

where A is the electromagnetic amplitude field (square root of intensity) at the
aperture as defined in (3.2) and the subscript x represents partial derivative in the
x-direction. According to this relation, the beam far-field spread grows linearly with
the distance of propagation. Furthermore, this equation shows that the beam spread
can be decomposed into two effects, a flow-induced spread (the terms involving L)
and a diffractional spread (the terms involving λ).

Figure 12 shows history of the x-spread and y-spread for the beam in case 1. The
spread of undistorted beam (only diffraction term) is 2.7 × 10−6 radians and increases
linearly with the wavelength. Therefore, for the case 1 beam diffraction plays a
negligible role in causing beam spread. The computed time-averaged spread values
are (4.6 ± 0.1) × 10−5 and (4.6 ± 0.3) × 10−5 in the x- and y-direction respectively. We
note that the uncertainties of these numbers are due to statistical error.

From figure 12 one can qualitatively observe that there is a correlation between
the beam spread in the x-direction and that in the y-direction. Based on 46 shedding
cycles of the flow the cross-covariance of the plots is calculated to be 0.65 ± 0.04.
This indicates that a significant portion of the optical distortion is caused by packets
of three-dimensional structures. As each one of these packets pass in front of the
aperture, they disperse the beam in both x- and y-direction.

Another useful instantaneous statistic is the depth of focus of the distorted
beam (�zf ), which is basically the far-field distance below which the beam’s total

spread(
√

σ 2
x + σ 2

y ) does not exceed the aperture size (see Mani et al. 2006 for exact

definition). For an undistorted beam, this definition is consistent with standard
definition given by Saleh & Teich (1991). As a rule of thumb, the depth of focus is
inversely proportional to the spread of the beam. Figure 13 shows the history of �zf

for the beam of case 1. In this case, the computed time-averaged value for the depth
of focus was 1930D ± 70D. In other words, for a 0.5m diameter cylinder, the beam



288 A. Mani, P. Moin and M. Wang

0 2 4 6 8 10

2000

4000

6000

t/tshedding

Δ
z f

 /
D

Figure 13. Instantaneous depth of focus for the beam in case 1: , instantaneous value;
, time-averaged value.

0 2 4 6 8 10
–1

0

1

2
× 10–4 × 10–4

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

t/tshedding t/tshedding

x-
ti

lt
/(

z f
ar

 –
 z

1
)

σ
x
/(

z f
ar

 –
 z

1
)

Figure 14. Comparison of tilt and spread for the beams of cases 1–3. The undistorted beam
has a zero tilt and spread of σx/(zfar − z1) = 0.027 × 10−4: , case 1; , case 2; ,
case 3.

0 2 4 6 8 10
–1

0

1

0 2 4 6 8 10

1
× 10–4 × 10–4

t/tshedding t/tshedding

x-
ti

lt
/(

z f
ar

 –
 z

1
)

σ
x
/(

z f
ar

 –
 z

1
)

Figure 15. Effect of aperture size on instantaneous statistics: , case 5; , case 6.

is focused up to a distance of about 1 km. The focus depth of the undistorted beam
is 28 300D which is an order of magnitude larger than that of the distorted beam.

Figure 14 compares tilt and spread distortions for the beam cases 1, 2 and 3. As
shown in figure 5, the case 1 beam passes through the separated shear layer after its
transition to turbulence, while the beams of cases 2 and 3 cross the shear layer through
its transitional regions. Consistently, both tilt and spread effects are lower for the case
3 beam and grow significantly as the beam angle changes towards downstream of
the shear layer. The ratio of average spread distortions to spread of the undistorted
beam are roughly 18, 6 and 2 for cases 1–3, respectively. In other words, as the beam
shifts its angle towards the downstream region, the spread error rises by a factor of
roughly three for every 17◦ shift. This is primarily caused by the increasing depth of
the non-uniform density region passed by the beam.

Next, we examine the effect of aperture size on instantaneous optical statistics.
Figure 15 shows the effect of aperture size on beam moments by comparing the
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

OPD rms/D (6.7 ± 0.2) × 10−6 1.9 × 10−6 1.2 × 10−6 (5.3 ± 0.2) × 10−6 2.9 × 10−6 4.9 × 10−6

OPD rms/D 2.7 × 10−6 0.7 × 10−6 0.23 × 10−6 2.2 × 10−6 1.4 × 10−6 3.0 × 10−6

(Tilt-removed)

Table 3. Standard and tilt-removed time-averaged OPD r.m.s. for different cases. The
uncertainty values represent statistical errors. The unreported errors are smaller than the
last significant figure.

results of case 5 and case 6. The larger aperture provides a more smooth tilt time
history and reduced amplitude of oscillations. This is expected, because with larger
aperture the tilt is averaged over a larger flow region, and therefore there is more
cancellation of fluctuations. However, the larger aperture slightly increases the spread
error. With smaller aperture the beam is affected by a smaller flow region which is
more coherent. Therefore, there is a higher chance that all parts of the beam are tilted
in the same direction, resulting in a larger tilt and less dispersed pattern in the far
field.

Another interesting observation is that the distortion history has an almost cyclic
pattern for these beams. For example, one can easily detect a background shedding
component in the tilt histories in figure 15. This indicates that the optically relevant
density fluctuations in the downstream wake are mostly dominated by coherent vortex
shedding. The frequency of optical tilt is twice the shedding frequency, since this beam
is affected by vortices shed from both top and bottom of the cylinder.

5.2. Time-averaged statistics

In this section we present the time-averaged optical statistics for different optical
configurations. We first present the commonly reported OPD r.m.s. values for each
beam. OPD r.m.s. is a measure of wavefront distortion after the beam passes
fluctuating refractive index field and before propagation to the far field (z = z1).
For each instantaneously distorted wavefront the standard definition of OPD r.m.s. is

OPD rms =

√(
L − L

)2
, (5.5)

where the bar represents intensity-weighted spatial average in the x–y-plane and L
is OPL, defined in (1.1). Here, in addition to standard OPD r.m.s. values, we report
the tilt-removed OPD r.m.s. values. The tilt-removed OPL is defined as

Ltilt-removed = L − L − xLx − yLy. (5.6)

The tilt-removed OPD r.m.s. is defined in a way similar to (5.5) except that instead
of L, tilt-removed OPL is used on the right-hand side. This parameter indicates the
portion of OPD responsible for causing spread errors in the far field. Table 3 shows
time-averaged OPD r.m.s. and the corresponding tilt-removed values for different
beam cases. Considering default optical wavelength of 2.5 × 10−6, all of the values in
the table correspond to phase errors of the order unity or higher. This confirms that
the SR formula does not accurately predict the far-field irradiance of these beams.

We directly computed the time series of far-field optical intensity and report time-
averaged far-field statistics in figure 16 for different optical configurations. For each
beam the two-dimensional intensity functions are averaged through the standard
averaging method. Again, in addition to the standard average, we present the average
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Figure 16. Time-averaged two-dimensional far-field beam intensity (top) and its y-integral
(bottom). Shown is the data for the beam of case 1. The peak integral intensity for the
undistorted beam is 0.051.

of the tilt-removed intensity. In this case, the tilt of each instantaneous optical
intensity is removed by a translation in the x–y-plane before time averaging. This
result represents the spread effect, while the standard averaging result shows the
combined effects of both tilt and spread. To further reduce the data, we present
the y-integral of these two-dimensional plots (note that y is the homogeneous flow
direction) shown at the bottom of figure 16. These integral intensity values are non-
dimensionalized by the product of the peak intensity of the default beam at the
aperture and the cylinder diameter.

Figure 17 shows time-averaged intensities for three wavelengths in the far field for
case 1 and compares them against the intensities of undistorted beams. As expected,
the undistorted beams have higher intensities in the far field for each wavelength.
A comparison of distorted and undistorted beams shows that only for the largest
wavelength diffraction plays a significant role in causing distortion. For the two
shorter wavelengths, flow-induced distortion dominates the diffraction effects. One
can see that the tilt-removed peak intensity does not monotonically depend on the
optical wavelength. In fact, there is an optimal wavelength that leads to a maximum
time-averaged peak intensity. This optimal wavelength can be considered a useful
parameter in designing optical devices. The existence of an optimal wavelength
is consistent with theoretical predictions in the literature (see for example Gilbert
1982). According to these predictions, in the limit of very large wavelength, the
far-field intensity drops due to diffraction effect. On the other hand, in the very
short wavelength limit, the far-field intensity drops exponentially according to (1.3).
Therefore an optimal wavelength must exist which delivers the maximum intensity.
Note that this argument is not sufficiently general, since the SR equation is only valid
for low-magnitude phase distortion.
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Figure 17. Time-averaged integral intensities of the case 1 beam for different optical
wavelengths. The plots represent (a) undistorted beam, (b) standard time-averaged beam
and (c) tilt-removed time-averaged beam. The peak intensity values for undistorted beams are
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λ/D = 10−5; , λ/D = 4 × 10−5.
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Figure 18. Time-averaged integral intensity for different beam cases as shown in figure 5.
The peak integral intensity is 0.051 for undistorted beam and 0.032 for the beam of case 3
(tilt-removed). The estimated statistical error of the peak values are 4%, 6%, 3%, 3%, 3%
and 4% for cases 1–6, respectively: standard average; , tilt-removed average.

Figure 18 compares the time-averaged intensities for the six different optical cases.
Comparison of standard averaged plots and tilt-removed plots shows that the tilting
effect is significant for all cases but is not necessarily dominant compared to the
spreading effect. Consistent with the instantaneous results discussed in § 5.1, the
beams in cases 2 and 3 have significantly higher far-field intensities than that of case
1. A comparison of cases 4 and 5 indicates that the near wake turbulence (x ′ ∼ 1.5D)
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(a) (b)

Figure 19. Instantaneous vorticity fields for (a) ReD = 3900 and (b) ReD = 10 000. Contour
levels are chosen between 0.2c∞/D and 12c∞/D.

causes more distortion to the beam than the downstream turbulence (x ′ ∼ 3.5D).
This indicates that although the wake thickness has increased at the downstream
location, turbulence intensity has decayed, which outweighs the wake growth to cause
decreased optical distortion for the beam of case 5. The turbulent kinetic energy
along the centreline of the wake was computed to be 0.059c2

∞ at x ′ = 1.5D (case 2)
and 0.030c2

∞ at x ′ = 3.5D (case 3), where c∞ is the free-stream speed of sound. In
other words, turbulence intensity drops by a factor of two between the two stations.
Figure 18 shows that the intensity of the tilt-removed beam is improved by a similar
factor from case 4 to case 5.

The effect of aperture size on optical distortions can be examined by comparing the
results of cases 5 and 6. The standard time-averaged intensity pattern (without tilt
removal) is almost the same for both apertures. In other words the combined tilt and
spread effects are the same for both beams. We note that although the larger aperture
beam has better diffraction properties, this effect has not caused much improvement
due to dominance of flow-induced distortion. Consistent with the results in § 5.1,
smaller aperture beam has better spread property and worse tilt effect than larger
aperture beam.

6. The effect of laminar versus transitional shear layers
In this section we compare optical distortion caused by flow at two different

Reynolds numbers. Using the same numerical method described in § 2, we performed
LES of turbulent flow over a cylinder at Reynolds number 10 000. Due to this Re
increase, in addition to developing more small structures in the wake, the separated
shear layers experience a significant change of state from laminar to transitional with
distinct coherent vortices.

Figure 19 compares the instantaneous vorticity fields of the two flows. In the
lower Reynolds number case, the separated shear layer breaks down by Kármán
instability while in the high-Re case Kármán instability is preceded by Kelvin–
Helmholtz instability. In this case, the separated shear layer breaks down earlier, and
the point of transition is moved upstream. This effect can be explained by examining
the effect of Reynolds number on relative growth rate of the two instabilities. While
the wake size and thus Kármán instability characteristics are not much affected by the
Reynolds number, the higher Re flow develops thinner shear layers. This increases the
growth rate of the Kelvin–Helmholtz instability (see Ho & Huerre 1984 for example)
and causes appearance of its corresponding structures before shedding occurs. This
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observation is consistent with the result of Dong et al. (2006) for incompressible
turbulent flow over a cylinder at the same Reynolds numbers. For more details on
transition of flow over cylinder see the book by Zdravkovich (1997). It can also be
seen in the figure 19 that after the shedding instability in the wake both Re cases
have qualitatively similar large-scale structures.

Figure 20 shows density spectra at the centreline of the wake for the two Reynolds
numbers. In the very near wake, at x = 1D the higher Reynolds number flow contains
higher fluctuations at all frequencies. This is expected, since this location is close to
the transitional region. However further downstream, at x = 2D, the spectra of both
flows are almost the same except at high frequencies. This indicates that the effect of
initial transition on turbulence diminishes as flow evolves and convects downstream.

Figure 21 compares time-averaged optical intensities for the two Reynolds numbers
for optical beams of cases 1–3 and 6. One observes that for the beams which pass
through the transitional flow regimes (i.e. cases 2 and 3), changing Re significantly
affects the far-field optical intensity. The beam of case 1 which passes through the
near wake after its transition to turbulence is much less affected by the change in Re.
The case 6 beam is almost unaffected although the higher Reynolds number flow has
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Figure 22. Fourier transform of the low-pass filter used to obtain coarser representation of
the density field.

higher density fluctuations at high frequencies. This indicates that the corresponding
small-scale turbulent structures are optically unimportant as observed by Zubair &
Catrakis (2007) and described by Mani, Wang & Moin (2008).

In summary, for the case of developed turbulence, where increasing Reynolds
number only affects the high-frequency spectra, optical distortions are not sensitive
to Reynolds number. In contrast, in the transitional regimes, Reynolds number can
significantly alter flow character which consequently influences optical distortions.
In these observations the shear layer thickness, which is influenced by the Reynolds
number, plays an important role in altering the flow regime. In practical applications
where Reynolds numbers of the order 107 are encountered, the thickness and dynamic
regime of the shear layer should be captured accurately for aero-optical predictions.
In these flows transition to turbulence occurs before separation of the shear layer
(assuming Re > 106). Therefore, it is expected that changing Re would not significantly
alter the separated shear layer regime and only influences the small scales which are
optically less important.

7. Effect of small flow structures
In this section we examine the effect of small flow scales on optical distortions by

comparing optical distortions caused by flows represented with different resolution.
Since higher Reynolds number flows involve smaller flow structures, we only present
this study for the higher Reynolds number case.

In the first step, we used a low-pass numerical filter to filter the density field
obtained from the original LES simulation. The transfer function of this sixth-order
filter is shown in figure 22. The filter was obtained by five repeated operations of the
following transformation in each direction:

f̂ i =
11

16
fi +

15

64
(fi+1 + fi−1) − 3

32
(fi+2 + fi−2) +

1

64
(fi+3 + fi−3). (7.1)

This filter provides a coarser representation of the flow in each direction by about
a factor of two. By comparing the optical results for the beams passing through
the filtered flow with the unfiltered results we can evaluate the effect of small flow
structures on optical distortions.

Furthermore, we performed a grid refinement study of the flow to ensure that all
of the relevant flow scales are captured by LES. An additional flow simulation was
performed in which the resolution was doubled in each direction compared to the
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Density source data Equivalent resolution

Coarse (original) simulation 288 × 396 × 48
Original simulation filtered 144 × 198 × 24
Fine simulation 576 × 792 × 96
Fine simulation filtered 288 × 396 × 48

Table 4. Test cases used for grid convergence study of optical computations at Re = 10 000.
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Figure 23. Effect of grid resolution on the density spectra at two wake centreline locations.
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Figure 24. Effect of flow resolution on optical computations; the plots represent average
tilt-removed integral intensity for different beam cases: coarse (original) simulation;

coarse simulation filtered; fine simulation; fine simulation filtered.

original simulation. The optical results of this fine LES were compared with the
results of the original simulation. In addition, the density field of this flow was filtered
to obtain a resolution comparable to the original resolution. By a combination of
filtering and grid refinement we obtained density fields at three different resolution
levels as presented in table 4. Figure 23 compares the density spectrum of the coarse
mesh simulation (original LES) with that of fine mesh simulation. The spectra of both
cases are similar except for high frequencies where the finer simulation has captured
more energy than the original LES.

The time-averaged optical results of these flow fields are shown in figure 24. Except
for the coarsest representation of the flow (coarse simulation filtered), all other
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plots are in agreement within statistical error. Therefore, it appears that the original
simulation has sufficient resolution to capture the optically relevant scales. Coarser
representation (than the original LES) of the flow can lead to up to 20 % error in
optical computations.

8. Conclusion
In summary, high-resolution large eddy simulations of compressible flow past a

circular cylinder at ReD = 3900 and 10 000 and M = 0.4 were performed, and the
flow statistics have been validated against previous experimental and numerical
results. Using the space–time history of the refractive index (density) field from LES,
instantaneous and statistical descriptions of the flow-induced optical aberrations have
been studied for different optical wavelengths, aperture sizes and beam positions in
the flow.

Our results show that the turbulent wake flow can significantly degrade the
performance of optical beams. In the range of relevant optical wavelengths, the
maximum irradiance of the optical beam can be reduced by one or two orders of
magnitude. Also, turbulence can severely limit the effective range of an optical beam.
It was observed that while the instantaneous optical intensity is strongly affected by
the beam’s wavelength, optical statistics are less affected by changing this parameter.
Unlike the undistorted case where shorter wavelengths are desirable for greater
depth of focus, for propagation through an aberrating medium, there is an optimal
wavelength. In addition to the turbulent wake, coherent vortices in the unstable shear
layers also lead to significant distortions of optical beams.

Through comparison of flows at two Reynolds numbers, optical distortions by the
downstream wake are found to be insensitive to Reynolds number. However, because
the instability and transition of the separated shear layer is affected at this Reynolds
number range, the near wake is found to cause more distortions for ReD =10 000
than ReD = 3900. By changing the optical aperture size and also filtering the flow, the
optical effects of different flow scales were studied, and through a grid convergence
study it was confirmed that the present LES captures all of the optically relevant flow
scales.
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